Data Scientist

Безкоштовно для вас

через просування

Data scientists допомагають компаніям працювати з великими обсягами даних та оптимізувати існуючі процеси на основі цих даних. Вони перетворюють необроблені дані на структуровані, аналізують їх і таким чином створюють основу для прийняття рішень.
  • Тип ступеня: Сертифікат "Data Scientist"
  • Додаткові кваліфікації: Сертифікат "Інженер з обробки даних
    Сертифікат "Аналітика даних
    Сертифікат "Машинне навчання
    Сертифікат "Глибинне навчання
  • Підсумковий іспит: Практична робота над проектами з фінальними презентаціями
  • Час занять: Повна зайнятість
    З понеділка по п'ятницю з 8:30 до 15:35 (у святкові дні з 8:30 до 17:10)
  • Мова викладання: Німецька
  • Тривалість: 16 Тижні

Інженер з обробки даних

Основи бізнес-аналітики (близько 2 днів)

Сфери застосування, виміри архітектури BI

Основи бізнес-аналітики, OLAP, OLTP, завдання інженерів даних

Сховища даних (DWH): обробка структурованих, напівструктурованих та неструктурованих даних


Управління вимогами (приблизно 2 дні)

Завдання, цілі та процедури в аналізі вимог

Моделювання даних, введення/моделювання за допомогою ERM

Введення / моделювання в UML

- Діаграми класів

- Аналіз варіантів використання

- Діаграми діяльності


Штучний інтелект (ШІ) в робочому процесі

Презентація конкретних технологій ШІ

та можливих застосувань у професійному середовищі


Бази даних (близько 3 днів)

Основи систем управління базами даних

Архітектура систем управління базами даних

Застосування СКБД

Реалізація моделі даних в СКБД, нормальні форми

Практичний та теоретичний вступ до SQL

Обмеження реляційних баз даних, csv, json


Сховище даних (приблизно 4 дні)

Зіркова схема

Моделювання даних

Створення зоряної схеми в СКБД

Схема "сніжинка", основи, моделювання даних

Створення схеми "сніжинка" в СКБД

Схема галактики: основи, моделювання даних

Повільно змінні розмірності типів 1-5 - переформулювання, укладання, реорганізація, міні-розмірність та тип 5

Вступ до нормальних, причинно-наслідкових, міні- та монстр-вимірів, гетерогенних та під-вимірів

Порівняння орієнтованих на стан і на транзакцію

Таблиці фактів DWH, щільність та зберігання


ETL (близько 4 днів)

Очищення даних

- Нульові значення

- Підготовка даних

- Гармонізація даних

- Застосування регулярних виразів

Розуміння даних

- Перевірка даних

- Статистичний аналіз даних

Захист даних, безпека даних

Практична структура ETL маршрутів

Data Vault 2.0, основи, хаби, лінки, сателіти, хеш-ключ, хеш-диф.

Моделювання даних у Data Vault

Практична структура моделі Data Vault - Raw Vault, практична реалізація хеш-процедур


Робота над проектом (близько 5 днів)

Закріплення вивченого матеріалу

Презентація результатів проекту

Аналітика даних

Вступ до аналізу даних (приблизно 1 день)

Еталонна модель CRISP-DM

Робочі процеси аналізу даних

Визначення штучного інтелекту, машинного навчання, глибокого навчання

Вимоги та роль в компанії інженерів даних, науковців даних та аналітиків даних


Огляд основ Python (приблизно 1 день)

типи даних

Функції


Аналіз даних (близько 3 днів)

Модулі Central Python в контексті аналізу даних (NumPy, Pandas)

Процес підготовки даних

Алгоритми інтелектуального аналізу даних на Python


Штучний інтелект (ШІ) в робочому процесі

Презентація конкретних технологій ШІ

та можливих застосувань у професійному середовищі


Візуалізація даних (близько 3 днів)

Розвідувальний аналіз даних

інсайти

Якість даних

Аналіз переваг

Візуалізація за допомогою Python: Matplotlib, Seaborn, Plotly Express

Сторітелінг даних


Управління даними (близько 2 днів)

Архітектури великих даних

Реляційні бази даних з SQL

Порівняння SQL та NoSQL баз даних

Бізнес-аналітика

Захист даних в контексті аналізу даних


Аналіз даних в контексті великих даних (приблизно 1 день)

Підхід MapReduce

Spark

NoSQL


Дашборди (приблизно 3 дні)

Бібліотека: Dash

Структура дашбордів - Компоненти Dash

Налаштування дашбордів

Зворотні дзвінки


Text Mining (близько 1 дня)

Попередня обробка даних

Візуалізація

Бібліотека: SpaCy


Робота над проектом (близько 5 днів)

Закріплення вивченого матеріалу

Презентація результатів проекту

Машинне навчання

Вступ до машинного навчання (близько 5 днів)

Чому машинне навчання?

Приклади застосування

Навчання під контролем, навчання без контролю, частково контрольоване навчання, навчання з підкріпленням

Приклади наборів даних

Знайомство з даними

Навчальні, валідаційні та тестові дані

Перегляд даних

Прогнозування


Навчання під наглядом (приблизно 5 днів)

Класифікація та регресія

Узагальнення, надмірна та недостатня підгонка

Розмір набору даних

Алгоритми для керованого навчання

Лінійні моделі

Байєсівські класифікатори

Дерева рішень

Випадковий ліс

Градієнтний бустінг

k-найближчих сусідів

Машини опорних векторів

Умовне випадкове поле

Нейронні мережі та глибоке навчання

Ймовірності


Самостійне навчання (близько 5 днів)

Типи самостійного навчання

Попередня обробка та масштабування

Перетворення даних

Масштабування навчальних і тестових даних

Зменшення розмірності

Інженерія особливостей

Навчання на множині

Декомпозиція головних компонент (PCA)

Невід'ємна матрична факторизація (NMF)

Навчання на множині з t-SNE

Кластерний аналіз

Кластеризація k-середніх

Агломеративна кластеризація

Ієрархічний кластерний аналіз

DBSCAN

Кластерні алгоритми


Оцінка та вдосконалення (приблизно 2 дні)

Вибір моделі та оцінка моделі

Налаштування гіперпараметрів оцінювача

Перехресна перевірка

Пошук по сітці

Метрики оцінки

Класифікація


Робота над проектом (близько 3 днів)

Закріплення вивченого матеріалу

Презентація результатів проекту

Глибоке навчання

Вступ до глибокого навчання (приблизно 1 день)

Глибинне навчання як різновид машинного навчання


Основи нейронних мереж (близько 4 днів)

Персептрон

Розрахунок нейронних мереж

Оптимізація параметрів моделі, регресія

Бібліотеки глибокого навчання

Регресія проти класифікації

Криві навчання, перенавчання та регуляризація

Гіперпараметрична оптимізація

Стохастичний градієнтний спуск (SGD)

Momentum, Adam Optimiser

Швидкість навчання


Згорткова нейронна мережа (CNN) (приблизно 2 дні)

Класифікація зображень

Згорткові шари, об'єднання шарів

Переформування шарів, згладжування, глобальне середнє об'єднання

Архітектури CNN ImageNet-Competition

Глибокі нейронні мережі, зникаючі градієнти, пропуск зв'язків, пакетна нормалізація


Трансферне навчання (приблизно 1 день)

Адаптація моделей

Попереднє навчання без нагляду

Доповнення даних зображення, зрозумілий ШІ


Регіональний CNN (приблизно 1 день)

Локалізація об'єктів

Регресійні задачі

Розгалужені нейронні мережі


Методи створення креативного іміджу (близько 1 дня)

Генеративні мережі суперництва (GAN)

Deepfakes

Дифузійні моделі


Рекурентні нейронні мережі (приблизно 2 дні)

Аналіз послідовностей

Рекурентні шари

Поширення в часі (BPTT)

Аналіз часових рядів

Проблеми градієнта, що вибухає та зникає

LSTM (Довга короткочасна пам'ять)

GRU (Gated Recurrent Unit)

Глибокий RNN

Deep LSTM


Обробка тексту за допомогою нейронних мереж (близько 2 днів)

Попередня обробка тексту

Вбудовування шарів

Класифікація тексту

Аналіз настрою

Трансферне навчання в NLP

Переклади

Метод "від послідовності до послідовності", архітектура кодер-декодер


Мовні моделі (приблизно 1 день)

BERT, GPT

Шари уваги, трансформатори

Конвеєри генерації тексту

Підсумовування

чат-боти


Навчання з глибоким підкріпленням (приблизно 1 день)

Управління динамічними системами

Агентні системи

Навчання через винагороду

Градієнти політики

Глибоке Q-навчання


Байєсівські нейронні мережі (приблизно 1 день)

Невизначеності в нейронних мережах

Статистична оцінка прогнозів

Достовірність, середньоквадратичне відхилення

Незбалансовані дані

Методи вибірки


Робота над проектом (близько 3 днів)

Закріплення вивченого матеріалу

Презентація результатів проекту



Можливі зміни. Зміст курсу регулярно оновлюється.

Навички програмування на Python та досвід роботи з базами даних (SQL) є обов'язковими.

Ви знайомі з процесами, пов'язаними зі збором, підготовкою, збагаченням та передачею даних, а також із застосуванням машинного навчання. Ви також знайомі зі сферами застосування глибокого навчання та функціонуванням нейронних мереж.

Курс орієнтований на осіб з вищою освітою в галузі комп'ютерних наук, бізнес-інформатики, бізнес-адміністрування, математики або аналогічною кваліфікацією.

Data scientists використовуються в компаніях, які хочуть оптимізувати свої бізнес-процеси на основі аналізу та моделювання великих обсягів даних, наприклад, в логістиці, онлайн-торгівлі та маркетингу, в енергетиці, а також в секторі охорони здоров'я.

Ваш змістовний сертифікат дає детальне уявлення про отриману кваліфікацію та покращує ваші кар'єрні перспективи.

Дидактична концепція

Ваші викладачі мають високу професійну та дидактичну кваліфікацію і навчатимуть вас від першого до останнього дня (без системи самонавчання).

Ви будете навчатися в ефективних малих групах. Курси зазвичай складаються з 6-25 учасників. Загальні заняття доповнюються численними практичними вправами з усіх модулів курсу. Практичний етап є важливою частиною курсу, оскільки саме в цей час ви опрацьовуєте вивчене, набуваєте впевненості та рутинності в його застосуванні. Заключний розділ курсу передбачає виконання проекту, кейс-стаді або підсумковий іспит.

 

Віртуальний клас alfaview®

BildungszentrumЗаняття проходять з використанням сучасної відеотехнології alfaview® - або з комфорту вашого власного будинку, або в нашому приміщенні за адресою . Весь курс може бачити один одного віч-на-віч через alfaview®, спілкуватися один з одним в якості голосу, синхронізованого по губах, і працювати над спільними проектами. Звичайно, ви також можете бачитись і спілкуватись зі своїми тренерами наживо в будь-який час, і протягом усього курсу викладачі навчатимуть вас у режимі реального часу. Уроки не є електронним навчанням, а справжнім живим викладанням віч-на-віч за допомогою відеотехнологій.

 

alfatraining Agentur für Arbeit Навчальні курси субсидуються та сертифікуються відповідно до положення про затвердження AZAV. Bildungsgutschein Aktivierungs- und VermittlungsgutscheinЯкщо ви подаєте заявку на або , всі витрати на курс, як правило, покриває організація, яка його фінансує.
Europäischen Sozialfonds Deutsche Rentenversicherung Фінансування також можливе через (ESF), (DRV) або регіональні програми фінансування. Berufsförderungsdienst Як військовослужбовець строкової служби, ви можете відвідувати курси підвищення кваліфікації через (BFD). Agentur für Arbeit (Qualifizierungschancengesetz) Компанії також можуть підвищити кваліфікацію своїх працівників за допомогою програми фінансування від .

Ми будемо раді проконсультувати вас безкоштовно. 0800 3456-500 Пн - Пт з 8:00 до 17:00
безкоштовно з усіх німецьких мереж.
Зв'яжіться з нами
Ми будемо раді проконсультувати вас безкоштовно. 0800 3456-500 Пн - Пт з 8:00 до 17:00 безкоштовно з усіх німецьких мереж.